Quasi-periodic Geometry for Architectural Acoustics

Main Article Content

Rima Ajlouni


The discovery of quasi-periodic atomic order in the crystalline state has uncovered an exciting new class of symmetries that has never been explored before. Because of their non-periodic translational order and self-similar properties, quasi-periodic structures offer unique opportunities for investigating questions related to their acoustical behavior. Their unique long-range non-periodic formations have the ability to diffuse and orchestrate the flow of sound energy in many unique ways; offering intriguing potential for innovating a new wave of optimized sound diffusers. One key limitation with available periodic diffusers is that their repeating logic creates repetitive energy loops, which significantly reduce their ability to uniformly disperse sound energy. Quasi-periodic geometry can mitigate such limitation. By encapsulating an infinite variety of distinct profiles in all directions, quasi-periodic surfaces can eliminate the formation of bundled or looped reflections; considerably enhancing the ability of the diffuser to uniformly disperse sound energy. To investigate this hypothesis, an experimental approach is used to simulate sound reflection patterns of the quasi-periodic surface profiles using a ray tracing method. Both qualitative and quantitative analyses are used to interpret the simulated results. The international Standards (ISO) metrics are used to validate the proposed approach and verify the results. Results show that the diffusion quality of the tested quasi-periodic surface is superior to the diffusion performance of the tested periodic surface.

Article Details

How to Cite
Ajlouni, R. “Quasi-Periodic Geometry for Architectural Acoustics”. ENQUIRY: The ARCC Journal, Vol. 15, no. 1, Dec. 2018, pp. 42-61, doi:10.17831/enq:arcc.v15i1.453.
Peer Reviewed Papers


Abe, Eiji, Yanfa Yan and Stephen J. Pennycook. 2004. Quasicrystals as cluster aggregates. Nat. Mater. 3:759.

AFMG Technologies GmbH, 2011-2018. AFMG Reflex - A new tool for the design and application of diffuser. Ahnert Feistel Media Group. Berlin, Germany. Accessed online at http://reflex.afmg.eu/) on July 10 2018.

Al Ajlouni, R. 2011. A long-range hierarchical clustering model for constructing perfect quasi-crystalline formations. Philosophical Magazine 91:2728-2738

Al Ajlouni, R. 2012. The global long-range order of quasi-periodic patterns in Islamic architecture. Acta Crystallographica Section A. 68: 235-243.

Al Ajlouni, R. 2013. "Octagon-based quasi-crystalline formations in Islamic architecture". In Aperiodic Crystals, ed. Siegbert Schmid, Ray L. Withers and Ron Lifshitz, 49-58. Amsterdam: Springer.

Al Ajlouni, R. 2017b. An ancient rule for constructing dodecagonal quasi-periodic formations. Journal of Physics: Conference Series. Volume 809 (1): http://iopscience.iop.org/article/10.1088/1742-6596/809/1/012028/pdf

Al Ajlouni, R. 2018. The relational logic behind the hierarchical geometry in Islamic art. In Proceedings of ISSC 2018: Logics of Image: Visual Learning, Logic and Philosophy of Form in East and West, Kolymbari, Crete, 11-18.

Angus, J. A. 1995. Using modulation phase reflection grating to achieve specific diffusion characteristics. In the 99 Audio Engineering Society Convention, pre-print 4117.

Arau-Puchades, H. 2016. "Sound is a wave: A new concept of Huygens acoustics diffuser" In Concert Hall Acoustics. PROCEEDINGS of the 22nd International Congress on Acoustics, Paper ICA2016-32. Buenos Aires – 5 to 9 September, 2016.

Bak, P. 1986. Icosahedral crystals: Where are the atoms?. Phys. Rev. Lett. 56: 861–864.

Boriskina, SV. 2015. Quasicrystals: Making invisible materials. Nat Photonics 9:422–424

Bradley, David, Erik O. Snow, Kimberly A. Riegel, Zachary D. Nasipak, and Andrew S. Terenzi. 2011. Numerical prediction of sound scattering from surfaces with fractal geometry: A preliminary investigation. Proc. Mtgs. Acoust. 12: 015010.

Cox, T. J. 1996. Designing curved diffusers for performance spaces. J. Audio. Eng. Soc. 44: 354-364.

Cox, T. J. and P. D'Antonio. 1997. Fractal sound diffusers. Proc. of the 103rd Convention of the Audio Eng. Soc. 1- 12.

Cox, T. J. and Y. Lam. 1993. Evaluation of methods for predicting the scattering from simple rigid panels. Applied Acoustics. 40: 123-140.

Cox, T. J. and Y. Lam. 1994. Prediction and evaluation of the scattering from quadratic residue diffusers. J. Acoust. Soc. Am. 95: 297-305.

Cox, Trevor J. and P. D'Antonio. 2004. Acoustic Absorbers and Diffusers: Theory, Design and Application. 1st ed. London and New York: Taylor & Francis.

Cox, Trevor J. and P. D'Antonio. 2009. Acoustic Absorbers and Diffusers: Theory, Design and Application. 2nd ed. London and New York: Taylor & Francis.

Cox, Trevor J. and P. D'Antonio. 2017. Acoustic Absorbers and Diffusers: Theory, Design and Application. 3rd ed. Boca Raton, FL: CRC Press,

Cox, T. J., B. I. L. Dalenback, P. D'Antonio, J. J. Embrechts, J.Y.Jeon, E. Mommertz and M. Vorl ̈aner. 2006. A tutorial on scattering and diffusion coefficients for room acoustic surfaces. Acta Acustica united with Acustica 92(1):1-15.

D'Antonio, P. and J. H. Konnert. 1992. The QRD diffractal: A new one- or two-dimensional fractal sound diffusor. J. Audio Eng. Soc. 40: 117-129.

D'Antonio, P. and T. J. Cox. 2000. Diffusor application in rooms. Applied Acoustics 60:113–42.

D'Antonio, P. and T. J. Cox. 2004. Embodiments of aperiodic tiling of a single asymmetric diffusive base shape. US patent 6772859.

De Bruijn, N. G. 1981a. Algebraic theory of Penrose's non-periodic tilings of the plane I. Indag. Math. 43:39–52.

De Bruijn, N. G. 1981b. Algebraic theory of Penrose's non-periodic tilings of the Plane II. Indag. Math. 43:53–66.

De Bruijn, N. G. 1981c. Sequences of zeros and ones generated by special production Rules. Indag. Math. 43:27-37.

Dong J.W., M.L. Chang, X.Q. Huang, Z.H. Hang, Z.C. Zhong, W.J. Chen and S.V. Boriskina. 2015. Conical dispersion and effective zero refractive index in photonic quasicrystals. Phys. Rev. Lett. 114(16): 163901.

Dubois, Jean-Marie. 2012. Properties- and applications of quasicrystals and complex metallic alloys. Chem. Soc. Rev. 41: 6760–6777.

Embrechts, J., D. Archambeau, and G. B. Stan. 2001. Determination of the scattering coefficient of random rough diffusing surfaces for room acoustics applications. Acta Acustica united with Acustica 87: 482-494.

Everest, F. and K. Pohlmann. 2009. Master Handbook of Acoustics. 5th ed. New York: McGraw Hill.

Farner, J. 2014. Acoustic diffusion: Simulation and Investigation of 2D Diffusers using the Boundary Element Method. BE (Hons) thesis, University of Tasmania: Hobart.

Fay, Michael W. 2013. Acoustics 101 for architects.The Journal of the Acoustical Society of America 134: 4005.

Fujiwara K. 1995. A study on the sound absorption of a quadratic-residue type diffuser. Acta Acust United Acust 81:370–8.

Funkhouser, T.,Tsingos T., Carlbom I., Elko G., Sondhi, M. and West, J. 2002. Modeling sound reflection and diffraction in architectural environments with beam tracing. Forum Acusticum, THE 3rd EAA EUROPEAN CONGRESS ON ACOUSTICS. Seville, Spain: 8.

Hargreaves, T., Cox, T. and Lam, Y. 2000. Surface diffusion coefficients for room acoustics: Free-field measures. J. Acoust. Soc. Am. 108: 1710-1720.

Henham, W, D. Holloway and L. Panton. 2016. Broadband acoustic scattering with modern aesthetics from random 3D terrain surfaces generated using the Fourier Synthesis algorithm. In Proceedings of Acoustics 2016: The Second Australasian Acoustical Societies Conference, Brisbane, Australia: 1-10.

Hughes, R.J., J.A. Angus, T.J. Cox, O. Umnova, G.A. Gehring, M. Pogson, and D. M. Whittaker. 2010. Volumetric diffusers: pseudorandom cylinder arrays on a periodic lattice. J Acoust Soc Am.128(5):2847-56.

Ishii, Y. and T. Fujiwara. 2008. "Electronic Structures and Stability of Quasicrystals." In Quasicrystals, edited by T. Fujiwara and Y. Ishii, 171- 203. Amsterdam: Elsevier.

Jazbec, Simon. 2009. "The Properties and Applications of Quasicrystals." In Seminar II, university of Ljubljana, Ljubljana. http://mafija.fmf.uni-lj.si/seminar/files/2009_2010/Quasicrystals.pdf

Kleiner M. and Tichy J. 2014. Acoustics of Small Rooms. London and New York: Taylor & Francis CRC Press.

Lam, Y. W. 1999, A boundary integral formulation for the prediction of acoustic scattering from periodic structures. J. Acoust. Soc. Am. 105(2): 762-769.

Lee, H. and T. Sakuma. 2015. Numerical characterization of acoustic scattering coefficients of one-dimensional periodic surfaces. Applied Acoustics 88: 129-136.

Lee, H., Y. Tsuchiya, and T. Sakuma. 2018. Acoustic scattering characteristics of Penrose-tiling-type diffusers. Applied Acoustics 130:168-176.

Levine, D. and P. Steinhardt. 1984. Quasicrystals: a new class of ordered structures. Phys. Rev. Lett. 53: 2477.

Levine, D. and P. Steinhardt. 1986. Quasicrystals. 1. Definition and structure. Phys. Rev. B 34: 596-616.

Lord, E.A., S. Ranganathan and U.D. Kulkarni. 2000. Tilings, coverings, clusters and quasicrystals. Curr. Sci. 78 (1): 64.

Lu, P. and P. Steinhardt. 2007. Decagonal and quasi-crystalline tilings in medieval islamic architecture. Science 315:11061110.

MacIá, Enrique. 2006. The role of aperiodic order in science and technology. Reports on Progress in Physics 69(2): 397.

Madison, Alexey E. 2015a Atomic structure of icosahedral quasicrystals: stacking multiple quasi-unit cells. RSC Adv. 5: 79279-79297.

Madison, Alexey E. 2015b. Substitution rules for icosahedral quasicrystals. RSC Adv. 5: 5745-5753.

Makovicky, E. 1992. "800-Year-Old Pentagonal Tiling from Maragha, Iran, and the New Varieties of a Periodic Tiling it Inspired." In Fivefold Symmetry, ed. I. Hargittai, 67–86. Singapore: World Scientific Publishing Co Pte Ltd.

Makovicky, E. and N. Makovicky. 2011. The first find of dodecagonal quasiperiodic tiling in historical islamic architecture. J. Appl. Cryst. 44: 569–573.

Makovicky, E., F. Rull P’erez and P. Fenoll Hach-Al’ı. 1998. Decagonal patterns in the islamic ornamental art of spain and morocco. Bolet’ın Sociedad Espa˜nola Mineralog’ıa. 21:107-127.

Martinsons, M., M. Sandbrink and M. Schmiedeberg. 2014. Colloidal trajectories in two-dimensional light-induced. quasicrystals with 14-fold symmetry due to phasonic drifts. Acta Physica Polonica A 126: 568

Mikhael, J., M. Schmiedeberg, S. Rausch, J. Roth, H. Stark and C. Bechinger. 2010. Proliferation of anomalous symmetries in colloidal monolayers subjected to quasiperiodic light fields. Proc Natl Acad Sci USA 107:7214

Ning, J. F. and G.P. Zhao. 2017. A fractal study of sound propagation characteristics in roughened porous materials. Wave Motion 68: 190-201.

Penrose, R. 1974. The role of aesthetics in pure and applied mathematical research. Bull. Inst. Math. Appl. 10: 266–271.

Qian, Z. W. 2001. Wave scattering on a fractal surface. J. Acoust. Soc. Am. 107: 260-262.

Rigby, J. 2005. A Turkish interlacing pattern and the golden ratio. Math. School. 34: 16-24.

Roichman, Y. and D. G. Grier .2005. Holographic assembly of quasicrystalline photonic heterostructures. Optics Express 13: 5434–5439

Saltzman, P. W. 2008. "Quasi-periodicity in Islamic ornamental design". In Nexus VII: Architecture and Mathematics Conference Series, ed. Kim Williams. 153–168. Torino: Kim Williams Books.

Schmiedeberg, M., C.V. Achim, J. Hielscher, S. C. Kapfer and H. Löwen. 2017. Dislocation-free growth of quasicrystals from two seeds due to additional phasonic degrees of freedom. physical Review E 96: 012602.

Schmiedeberg, M. and H. Stark. 2012. Comparing light-induced colloidal quasicrystals with different rotational symmetries. J Phys Condens Matter 24: 284101.

Schroeder, M. R. 1975. Diffuse sound reflection by maximum- length sequences. The Journal of the Acoustical Society of America 57(1):149–150.

Schroeder, M. 1975. Binaural dissimilarity and optimum ceilings for concert halls: more lateral sound diffusion. The Journal of the Acoustical Society of America 65: 958–63.

Shechtman, D., I. Blech, D. Gratias and J.W. Cahn. 1984. Metallic phase with long range orientational order and no translation symmetry. Phys. Rev. Lett. 53(20): 951-1954.

Socolar, J., P. Steinhardt and D. Levine. 1985. Quasicrystals with arbitrary orientational symmetry. Phys. Rev. B 32: 5547–5550.

Steurer, W. and D. S. Widmer. 2007. Photonic and phononic quasicrystals. J Phys D: Appl Phys 40:R229–R247.

Yamamoto, Akiji and Hiroyuki Takakura. 2008. Recent development of quasicrystallography. In Quasicrystals, ed. by T. Fujiwara and Y. Ishii, 11-47. Amsterdam: Elsevier.

Zhu, Y., Fan, X., Liang, B., Cheng, J. and Jing, Y. 2017. Ultrathin Acoustic Metasurface-Based Schroeder Diffuser. Phys. Rev. X 7: 021034.